With the growing adoption of deep learning for on-device TinyML applications, there has been an ever-increasing demand for efficient neural network backbones optimized for the edge. Recently, the introduction of attention condenser networks have resulted in low-footprint, highly-efficient, self-attention neural networks that strike a strong balance between accuracy and speed. In this study, we introduce a faster attention condenser design called double-condensing attention condensers that allow for highly condensed feature embeddings. We further employ a machine-driven design exploration strategy that imposes design constraints based on best practices for greater efficiency and robustness to produce the macro-micro architecture constructs of the backbone. The resulting backbone (which we name AttendNeXt) achieves significantly higher inference throughput on an embedded ARM processor when compared to several other state-of-the-art efficient backbones (>10x faster than FB-Net C at higher accuracy and speed and >10x faster than MobileOne-S1 at smaller size) while having a small model size (>1.37x smaller than MobileNetv3-L at higher accuracy and speed) and strong accuracy (1.1% higher top-1 accuracy than MobileViT XS on ImageNet at higher speed). These promising results demonstrate that exploring different efficient architecture designs and self-attention mechanisms can lead to interesting new building blocks for TinyML applications.


翻译:随着人们越来越多地采用深入的学习方法来进行在设备上安装的微粒ML应用,对优化边缘优化的高效神经网络主干网的需求不断增加。最近,引入关注冷凝器网络导致低脚印、高效率和自控神经网络,从而在准确性和速度之间达到强烈的平衡。在这项研究中,我们引入了一种更快的注意冷凝器设计,称为双凝聚式冷凝器,允许高凝固特性嵌入。我们进一步采用了机械驱动的设计探索战略,根据提高效率和稳健性以形成骨干宏观-微型结构构建的最佳做法,在设计上设置了限制。由此形成的骨干(我们命名为NeXt)在嵌入的ARM进程上实现了显著的更低脚印、高效率的神经网络网络网络网络网络。 与其他最先进的节能骨架相比,我们引入了一个更快的注意冷凝压缩器设计,其精度和速度比Mmovey1-S1型设计速度快10x要快。我们还采用了一种机器驱动的设计探索型设计,其型规模小(比移动Net3-L结构更小,比移动网络结构更小,以更高,以更高的精度更高精度更高精度,以高的S-L,以高速度展示速度展示速度,在高级的S-V1-1号的S-V1号最高的图像结构,以高速度展示了速度,以高速度,在高级的自我结构结构显示,以更高的速度展示速度展示,在高。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
论文共读 | Attention is All You Need
黑龙江大学自然语言处理实验室
14+阅读 · 2017年9月7日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
12+阅读 · 2019年4月9日
Arxiv
21+阅读 · 2018年5月23日
Arxiv
27+阅读 · 2017年12月6日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
论文共读 | Attention is All You Need
黑龙江大学自然语言处理实验室
14+阅读 · 2017年9月7日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员