When reading a story, humans can rapidly understand new fictional characters with a few observations, mainly by drawing analogy to fictional and real people they met before in their lives. This reflects the few-shot and meta-learning essence of humans' inference of characters' mental states, i.e., humans' theory-of-mind (ToM), which is largely ignored in existing research. We fill this gap with a novel NLP benchmark, TOM-IN-AMC, the first assessment of models' ability of meta-learning of ToM in a realistic narrative understanding scenario. Our benchmark consists of $\sim$1,000 parsed movie scripts for this purpose, each corresponding to a few-shot character understanding task; and requires models to mimic humans' ability of fast digesting characters with a few starting scenes in a new movie. Our human study verified that humans can solve our problem by inferring characters' mental states based on their previously seen movies; while the state-of-the-art metric-learning and meta-learning approaches adapted to our task lags 30% behind.


翻译:当阅读一个故事时,人类可以通过一些观察迅速理解新的虚构人物,主要是通过类比他们一生中遇到的虚构和真实的人。这反映了人类对人物精神状态的几分和元化推论的精髓,即人类的智力理论(TOM),现有研究基本上忽视了这一点。我们用一个新的NLP基准(TOM-IN-AMC)填补了这一空白,即TOM-IN-AMC(TOM-IN-AMC),这是在现实的叙述性理解情景中首次评估TOM元学习模型的能力。我们的基准包括1 000美元,为此对电影脚本进行评比对,每本都相当于几个截图的字符理解任务;要求模型模拟人类快速消化字符的能力,在新电影中先有几幕。我们的人类研究证实,人类可以通过根据他们以前看到的电影推断人的精神状态来解决我们的问题;同时,根据我们的任务落后了30%,采用最先进的计量和元学习方法。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Pseudoperiodic Words and a Question of Shevelev
Arxiv
0+阅读 · 2022年12月30日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
13+阅读 · 2022年1月20日
Arxiv
65+阅读 · 2021年6月18日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
26+阅读 · 2020年2月21日
Arxiv
13+阅读 · 2019年1月26日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关论文
Pseudoperiodic Words and a Question of Shevelev
Arxiv
0+阅读 · 2022年12月30日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
13+阅读 · 2022年1月20日
Arxiv
65+阅读 · 2021年6月18日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
26+阅读 · 2020年2月21日
Arxiv
13+阅读 · 2019年1月26日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员