Utilizing vehicle-to-everything (V2X) communication technologies, vehicle platooning systems are expected to realize a new paradigm of cooperative driving with higher levels of traffic safety and efficiency. Connected and Autonomous Vehicles (CAVs) need to have proper awareness of the traffic context. However, as the quantity of interconnected entities grows, the expense of communication will become a significant factor. As a result, the cooperative platoon's performance will be influenced by the communication strategy. While maintaining desired levels of performance, periodic communication can be relaxed to more flexible aperiodic or event-triggered implementations. In this paper, we propose a control-aware communication solution for vehicle platoons. The method uses a fully distributed control-aware communication strategy, attempting to decrease the usage of communication resources while still preserving the desired closed-loop performance characteristics. We then leverage Model-Based Communication (MBC) to improve cooperative vehicle perception in non-ideal communication and propose a solution that combines control-aware communication with MBC for cooperative control of vehicle platoons. Our approach achieves a significant reduction in the average communication rate ($47\%$) while only slightly reducing control performance (e.g., less than $1\%$ speed deviation). Through extensive simulations, we demonstrate the benefits of combined control-aware communication with MBC for cooperative control of vehicle platoons.


翻译:车辆排队系统在利用车辆到所有设备(V2X)的通讯技术的同时,预计将实现一个新的合作驾驶模式,其交通安全和效率更高; 连接和自主车辆(CAVs)需要适当了解交通情况; 然而,随着相互连接的实体数量增加,通信费用将成为一个重要因素; 因此,合作排的性能将受到通信战略的影响; 在保持预期业绩水平的同时,定期通信可以放松,以更灵活的定期或事件触发方式实施。 在本文件中,我们建议为车辆排提出控制-意识通信解决方案。该方法采用完全分布式的控制-意识通信战略,试图减少通信资源的使用,同时保持理想的闭路性能特点。我们然后利用基于模式的通信(MBC)来改善非理想通信中的合作性车辆观念,并提出一种将控制-意识通信与MBC相结合的解决方案,以便对车辆排进行合作控制。我们的方法大大降低了平均通信率(47+++++++1美元),同时仅略微降低车辆控制速度。</s>

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Adaptive Synthetic Characters for Military Training
Arxiv
46+阅读 · 2021年1月6日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员