For a positive integer $\ell \geq 3$, the $C_\ell$-Contractibility problem takes as input an undirected simple graph $G$ and determines whether $G$ can be transformed into a graph isomorphic to $C_\ell$ (the induced cycle on $\ell$ vertices) using only edge contractions. Brouwer and Veldman [JGT 1987] showed that $C_4$-Contractibility is NP-complete in general graphs. It is easy to verify that $C_3$-Contractibility is polynomial-time solvable. Dabrowski and Paulusma [IPL 2017] showed that $C_{\ell}$-Contractibility is \NP-complete\ on bipartite graphs for $\ell = 6$ and posed as open problems the status of the problem when $\ell$ is 4 or 5. In this paper, we show that both $C_5$-Contractibility and $C_4$-Contractibility are NP-complete on bipartite graphs.
翻译:对于正整数 $\ ell \ geq 3 美元, 美元- 合同问题将一个未定向的简单图表G$作为输入, 并决定G$能否转换成一个仅使用边缘收缩的正整数 $@ell $@ geq 3$ (美元) 。 Brouwer 和 Veldman [JGT 1987] 显示, $C_ 4$- 合同在一般图表中是完全的。 很容易核实, $C_ 3$- 合同是多元时间可溶的。 Dabrowski 和 Paulusma [IPL 2017] 显示, 美元= 6美元的双面图显示, 美元= 6美元的可兑换度= 美元= 美元, 并且作为公开问题提出, 当美元= ell$ 4 或 5时, 我们在本文件中显示, $C_ 5$- 合同和 $C_ 4$- 合同均是双面图上的NPP- 。