We give efficient algorithms for finding power-sum decomposition of an input polynomial $P(x)= \sum_{i\leq m} p_i(x)^d$ with component $p_i$s. The case of linear $p_i$s is equivalent to the well-studied tensor decomposition problem while the quadratic case occurs naturally in studying identifiability of non-spherical Gaussian mixtures from low-order moments. Unlike tensor decomposition, both the unique identifiability and algorithms for this problem are not well-understood. For the simplest setting of quadratic $p_i$s and $d=3$, prior work of Ge, Huang and Kakade yields an algorithm only when $m \leq \tilde{O}(\sqrt{n})$. On the other hand, the more general recent result of Garg, Kayal and Saha builds an algebraic approach to handle any $m=n^{O(1)}$ components but only when $d$ is large enough (while yielding no bounds for $d=3$ or even $d=100$) and only handles an inverse exponential noise. Our results obtain a substantial quantitative improvement on both the prior works above even in the base case of $d=3$ and quadratic $p_i$s. Specifically, our algorithm succeeds in decomposing a sum of $m \sim \tilde{O}(n)$ generic quadratic $p_i$s for $d=3$ and more generally the $d$th power-sum of $m \sim n^{2d/15}$ generic degree-$K$ polynomials for any $K \geq 2$. Our algorithm relies only on basic numerical linear algebraic primitives, is exact (i.e., obtain arbitrarily tiny error up to numerical precision), and handles an inverse polynomial noise when the $p_i$s have random Gaussian coefficients. Our main tool is a new method for extracting the linear span of $p_i$s by studying the linear subspace of low-order partial derivatives of the input $P$. For establishing polynomial stability of our algorithm in average-case, we prove inverse polynomial bounds on the smallest singular value of certain correlated random matrices with low-degree polynomial entries that arise in our analyses.
翻译:我们提供高效的算法, 以找到来自低级的不球形混合物的电量和分解值。 不同于 ARor 分解, 这个问题的独特识别和算法均不易理解。 对于包含 $ p_ 美元和 $ 美元的简单设置 。 直线 $ p_ 美元 和 美元 的计算法, 只有在研究了 $leq tilde{ O} (\ qrt{n} 美元 ) 的情况下, 方程式自然出现。 另一方面, 较普通的Garg、 Kayal和 Saha最近的结果, 既能处理 美元 美元 美元, 也能够理解 美元 美元 的计算法 。 当 美元 基底值 3 美元 和 美元 美元 的计算法 时, 方基值的计算法只有 美元 。