项目名称: 陶瓷电极催化活性结构的原位构筑与调制及电解CO2机理研究
项目编号: No.91545123
项目类型: 重大研究计划
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 谢奎
作者单位: 中国科学院福建物质结构研究所
项目金额: 80万元
中文摘要: 固体氧化物电解池可直接电解CO2制备燃料,在能源转换和利用方面具有重要的研究价值和应用前景。传统Ni基阴极直接高温电解易氧化且热循环性能弱,氧化还原稳定的(La,Sr)TiO3+δ陶瓷阴极虽可直接电解CO2但是催化活性较弱。本项目对(La,Sr)TiO3+δ掺杂活性元素M (M=Mn,Cr)构造氧空位,原位可逆生长Ni1-xCux合金催化剂与氧空位耦合构筑催化活性结构,可控构筑纳米金属/陶瓷复合电极表界面新体系。研究电极氧空位吸附与活化CO2的机理和Ni1-xCux组分调控催化动力学的规律,研究催化活性结构催化裂解CO2的机理及其尺寸与密度调变纳米金属/陶瓷复合体系催化裂解CO2动力学的规律,研究新型金属/陶瓷界面对复合体系高温稳定性及热循环性能的增强机制。本项目拟阐明构筑陶瓷电极催化活性结构的一般规律,确定复合电极表界面新体系催化裂解CO2的机理,为催化还原CO2提供有价值的参考。
中文关键词: 固体氧化物电解池;陶瓷阴极;催化活性结构;氧空位;金属催化剂
英文摘要: Solid oxide electrolyzers can directly electrolyze CO2 to produce fuel, which has attracted a lot of research interests and also demonstrated important practical application potential in the field of clean energy conversion and utilization. Traditional nickel cathode with poor redox and thermal cycling performances is easy to be oxidized when performing direct high temperature electrolysis. In contrast, redox-stable (La,Sr)TiO3+δ ceramic can perform direct high temperature electrolysis; however, the insufficient electrocatalytic activity still restricts kinetic process. This proposal aims to develop high-performance metal/ceramic composite electrode for direct carbon dioxide electrolysis by combining in situ formation of oxygen vacancy with active metal dopant and in situ growth of Ni1-xCux alloy catalyst. By coupling surface oxygen vacancy and metal catalyst, catalytic active structure will be constructed to enhance catalysis performances. Firstly, the chemical adsorption and activation of carbon dioxide molecules will be studied. Secondly, the composition of Ni1-xCux alloys will be tailored to tune the kinetic process of high temperature car bon dioxide electrolysis. Thirdly, the catalysis mechanism of active structure and the influence of active strcuture size and density will be investigated. The energy conversion, cathode stability and redox cycling performance of high temperature carbon dioxide electrolysis are then studied. Composite metal/ceramic electrode will be developed through control of point defects and reversible phase changes. The creation of new interface and surface in composite electrode will be determined and the CO2 catalysis mechamism is also to be made clear, which will provide valuable references for electrocatalytic carbon dioxide conversion.
英文关键词: Solid oxide electrolysis cells;Ceramic cathode;Catalytic active structure;Oxygen vacancy;Metal catalysts