The rotation-two-component Camassa--Holm system, which possesses strongly nonlinear coupled terms and high-order differential terms, tends to have continuous nonsmooth solitary wave solutions, such as peakons, stumpons, composite waves and even chaotic waves. In this paper an accurate semi-discrete conservative difference scheme for the system is derived by taking advantage of its Hamiltonian invariants. We show that the semi-discrete numerical scheme preserves at least three discrete conservative laws: mass, momentum and energy. Furthermore, a fully discrete finite difference scheme is proposed without destroying anyone of the conservative laws. Combining a nonlinear iteration process and an efficient threshold strategy, the accuracy of the numerical scheme can be guaranteed. Meanwhile, the difference scheme can capture the formation and propagation of solitary wave solutions with satisfying long time behavior under the smooth/nonsmooth initial data. The numerical results reveal a new type of asymmetric wave breaking phenomenon under the nonzero rotational parameter.
翻译:旋转二分量Camassa-Holm系统具有强非线性耦合项和高阶微分项,通常具有连续非光滑的孤立波解,例如浮峰,stumpon,复合波甚至混沌波。本文通过利用其哈密顿不变量,导出了一个精确的半离散保守差分格式,来处理该系统。我们展示了半离散数值方案至少保留了质量、动量和能量三种离散保守定律。此外,提出了一种完全离散的有限差分格式,没有破坏其中任何一种保守定律。通过结合非线性迭代过程和高效的阈值策略,可以保证数值格式的精度。同时,差分方案可以捕捉到在光滑/非光滑的初值下,孤立波解的形成和传播,且具有令人满意的长时行为。数值结果揭示了非零旋转参数下的一种新型不对称波浪破碎现象。