Recent years have seen an increasing amount of research devoted to the development of so-called resonance-based methods for dispersive nonlinear partial differential equations. In many situations, this new class of methods allows for approximations in a much more general setting (e.g. for rough data) than, for instance, classical splitting or exponential integrator methods. However, they lack one important property: the preservation of geometric properties of the flow. This is particularly drastic in the case of the Korteweg--de Vries (KdV) equation and the nonlinear Schr\"odinger equation (NLSE) which are fundamental models in the broad field of dispersive infinite-dimensional Hamiltonian systems, possessing infinitely many conserved quantities, an important property which we wish to capture - at least up to some degree - also on the discrete level. Nowadays, a wide range of structure preserving integrators for Hamiltonian systems are available, however, typically these existing algorithms can only approximate highly regular solutions efficiently. State-of-the-art low-regularity integrators, on the other hand, poorly preserve the geometric structure of the underlying PDE. In this work we introduce a novel framework, so-called Runge-Kutta resonance-based methods, which are able to bridge the gap between low regularity and structure preservation in the KdV and NLSE case. In particular, we are able to characterise a large class of symplectic (in the Hamiltonian picture) resonance-based methods for both equations that allow for low-regularity approximations to the solution while preserving the underlying geometric structure of the continuous problem on the discrete level.
翻译:暂无翻译