The discovery of drug-target interactions (DTIs) is a pivotal process in pharmaceutical development. Computational approaches are a promising and efficient alternative to tedious and costly wet-lab experiments for predicting novel DTIs from numerous candidates. Recently, with the availability of abundant heterogeneous biological information from diverse data sources, computational methods have been able to leverage multiple drug and target similarities to boost the performance of DTI prediction. Similarity integration is an effective and flexible strategy to extract crucial information across complementary similarity views, providing a compressed input for any similarity-based DTI prediction model. However, existing similarity integration methods filter and fuse similarities from a global perspective, neglecting the utility of similarity views for each drug and target. In this study, we propose a Fine-Grained Selective similarity integration approach, called FGS, which employs a local interaction consistency-based weight matrix to capture and exploit the importance of similarities at a finer granularity in both similarity selection and combination steps. We evaluate FGS on five DTI prediction datasets under various prediction settings. Experimental results show that our method not only outperforms similarity integration competitors with comparable computational costs, but also achieves better prediction performance than state-of-the-art DTI prediction approaches by collaborating with conventional base models. Furthermore, case studies on the analysis of similarity weights and on the verification of novel predictions confirm the practical ability of FGS.
翻译:发现药物-目标相互作用(DTIs)是制药发展的关键过程。计算方法是一种有希望和有效率的替代方法,可以替代许多候选人预测新的DTI的繁琐和昂贵的湿实验室实验。最近,随着来自不同数据源的丰富多样的生物信息,计算方法能够利用多种药物和目标的相似性来提高DTI预测的绩效。相似性整合是一种有效而灵活的战略,在互补的相似性观点中提取关键信息,为基于类似性的DTI预测模型提供压缩投入。然而,现有的类似性整合方法从全球角度过滤和融合相似之处,忽视了每种药物和目标的类似性观点的效用。在本研究中,我们提出了一个称为FGS(FGS)的精细多选择性相似性生物信息整合方法,它利用基于一致性的地方互动的权重矩阵,在相似性选择和组合步骤中捕捉和利用相似性微粒性相似性效应的重要性。我们在各种预测环境中对五种DGS(DTI)预测新数据集进行评估。实验结果表明,我们的方法不仅超越了FGS(FGS)新颖性能力,而且实验结果显示我们的方法不仅超越了FSI(FSI)预测能力,而且通过可比较的预测性基本的计算成本的模型也实现了)的预测性分析,还实现了。