Cross-Domain Recommendation (CDR) is an effective way to alleviate the cold-start problem. However, previous work severely ignores fairness and bias when learning the mapping function, which is used to obtain the representations for fresh users in the target domain. To study this problem, in this paper, we propose a Fairness-aware Cross-Domain Recommendation model, called FairCDR. Our method achieves user-oriented group fairness by learning the fairness-aware mapping function. Since the overlapping data are quite limited and distributionally biased, FairCDR leverages abundant non-overlapping users and interactions to help alleviate these problems. Considering that each individual has different influence on model fairness, we propose a new reweighing method based on Influence Function (IF) to reduce unfairness while maintaining recommendation accuracy. Extensive experiments are conducted to demonstrate the effectiveness of our model.


翻译:跨部门建议(CDR)是缓解冷启动问题的有效途径。然而,先前的工作在学习绘图功能时严重忽视了公平和偏见,而绘图功能被用来为目标领域的新用户获取代表。为了研究这一问题,我们在本文件中提出了公平意识跨部建议模式,称为FairCDR。我们的方法通过学习公平意识绘图功能实现了面向用户的公平。由于重叠的数据相当有限,分布偏差,公平中心利用大量非重叠用户和互动来帮助缓解这些问题。考虑到每个人对模型公平有不同的影响,我们根据影响力功能(IF)提出新的调整方法,以减少不公平现象,同时保持建议准确性。我们进行了广泛的实验,以展示模型的有效性。

0
下载
关闭预览

相关内容

【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
论文周报 | 推荐系统领域最新研究进展
机器学习与推荐算法
2+阅读 · 2022年4月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
论文周报 | 推荐系统领域最新研究进展
机器学习与推荐算法
2+阅读 · 2022年4月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员