The Student-$t$ distribution is widely used in statistical modeling of datasets involving outliers since its longer-than-normal tails provide a robust approach to hand such data. Furthermore, data collected over time may contain censored or missing observations, making it impossible to use standard statistical procedures. This paper proposes an algorithm to estimate the parameters of a censored linear regression model when the regression errors are autocorrelated and the innovations follow a Student-$t$ distribution. To fit the proposed model, maximum likelihood estimates are obtained throughout the SAEM algorithm, which is a stochastic approximation of the EM algorithm useful for models in which the E-step does not have an analytic form. The methods are illustrated by the analysis of a real dataset that has left-censored and missing observations. We also conducted two simulations studies to examine the asymptotic properties of the estimates and the robustness of the model.
翻译:学生-美元分布法被广泛用于统计外源数据集的建模,因为其长于正常的尾巴提供了可靠的方法来提供这些数据;此外,长期收集的数据可能包含经过审查的或缺失的观察结果,因此无法使用标准的统计程序;本文件提出一种算法,在回归错误与回溯有关、创新随学生-美元分布而变化的情况下,估计经审查的线性回归模型的参数;为了与拟议的模型相适应,在整个SAEM算法中获得最大的可能性估计值,这是EM算法的随机近似法,对电子步骤不具有分析形式的模型有用,方法通过对真实数据集的分析加以说明,而实际数据集经过左检和缺失的观察结果。我们还进行了两项模拟研究,以研究估算的无症状特性和模型的坚固性。