Cross-slide image analysis provides additional information by analysing the expression of different biomarkers as compared to a single slide analysis. These biomarker stained slides are analysed side by side, revealing unknown relations between them. During the slide preparation, a tissue section may be placed at an arbitrary orientation as compared to other sections of the same tissue block. The problem is compounded by the fact that tissue contents are likely to change from one section to the next and there may be unique artefacts on some of the slides. This makes registration of each section to a reference section of the same tissue block an important pre-requisite task before any cross-slide analysis. We propose a deep feature based registration (DFBR) method which utilises data-driven features to estimate the rigid transformation. We adopted a multi-stage strategy for improving the quality of registration. We also developed a visualisation tool to view registered pairs of WSIs at different magnifications. With the help of this tool, one can apply a transformation on the fly without the need to generate transformed source WSI in a pyramidal form. We compared the performance of data-driven features with that of hand-crafted features on the COMET dataset. Our approach can align the images with low registration errors. Generally, the success of non-rigid registration is dependent on the quality of rigid registration. To evaluate the efficacy of the DFBR method, the first two steps of the ANHIR winner's framework are replaced with our DFBR to register challenge provided image pairs. The modified framework produces comparable results to that of challenge winning team.
翻译:交叉滑动图像分析通过分析不同生物标记的表达方式而提供补充信息, 与单一幻灯片分析相比。 这些生物标记显示的幻灯片是侧面分析, 显示它们之间的未知关系。 在幻灯片制作期间, 组织部分可能与同一组织块的其他部分相比, 任意定向。 组织内含可能从一个部分变化到下一个部分, 一些幻灯片上可能存在独特的人工制品, 使得组织内含可能使问题更加复杂。 这样, 将同一组织内含一个参考部分的登记在同一个组织块的某一部分上, 成为任何交叉滑动分析之前的一项重要先决条件任务。 我们提出了基于深度特征的注册( DFBR) 方法, 使用数据驱动特性来估计僵硬的变换。 我们采取了多阶段战略来提高注册质量。 我们还开发了一个视觉化工具, 查看已注册的 WSI 配对, 借助这一工具, 可以在苍蝇上进行转换, 无需在金字型格式上生成变换源的 WSI 。 我们将数据驱动的硬性特征的性特征与硬性图像的升级性化的注册方式进行了对比。 我们的升级后, 将成功的图像的系统化的注册的系统化的系统化的系统化的系统内, 运行的升级的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统进行成, 。