Recently, high dynamic range (HDR) image reconstruction based on the multiple exposure stack from a given single exposure utilizes a deep learning framework to generate high-quality HDR images. These conventional networks focus on the exposure transfer task to reconstruct the multi-exposure stack. Therefore, they often fail to fuse the multi-exposure stack into a perceptually pleasant HDR image as the inversion artifacts occur. We tackle the problem in stack reconstruction-based methods by proposing a novel framework with a fully differentiable high dynamic range imaging (HDRI) process. By explicitly using the loss, which compares the network's output with the ground truth HDR image, our framework enables a neural network that generates the multiple exposure stack for HDRI to train stably. In other words, our differentiable HDR synthesis layer helps the deep neural network to train to create multi-exposure stacks while reflecting the precise correlations between multi-exposure images in the HDRI process. In addition, our network uses the image decomposition and the recursive process to facilitate the exposure transfer task and to adaptively respond to recursion frequency. The experimental results show that the proposed network outperforms the state-of-the-art quantitative and qualitative results in terms of both the exposure transfer tasks and the whole HDRI process.


翻译:最近,基于一个特定暴露的多接触层的高动态范围图像重建(HDR)基于一个特定暴露层的多接触层的图像重建利用一个深层次学习框架生成高质量的人类发展报告图像。这些常规网络侧重于曝光传输任务,以重建多接触层的堆叠。因此,随着反向人工制品的出现,这些传统网络往往未能将多接触堆堆放在一个令人感觉愉快的《人类发展报告》图像中。我们通过提出一个具有完全不同高度动态成像(HDRI)进程的新框架来解决堆堆重建方法中的问题。此外,我们的网络通过明确使用将网络产出与地面真象《人类发展报告》图像进行比较的丢失,使一个产生多接触堆的神经网络得以生成多接触堆,以便进行刺人式的培训。换句话说,我们不同的《人类发展报告》合成层帮助深层的神经网络进行训练,以创建多接触层堆叠,同时反映人类发展报告进程中多接触层图像的精确关联性。此外,我们的网络使用图像分解和回溯进程来便利暴露状态转移任务,并对回频进行适应性反应。实验结果显示拟议的网络质量任务和整个质量任务。

1
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Python图像处理,366页pdf,Image Operators Image Processing in Python
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
60+阅读 · 2019年8月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】学习多视图相似度(ICCV-2017)
泡泡机器人SLAM
10+阅读 · 2018年10月7日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Arxiv
0+阅读 · 2021年2月21日
Image Captioning based on Deep Reinforcement Learning
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
Arxiv
8+阅读 · 2018年5月1日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关论文
Arxiv
0+阅读 · 2021年2月21日
Image Captioning based on Deep Reinforcement Learning
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
Arxiv
8+阅读 · 2018年5月1日
Arxiv
19+阅读 · 2018年3月28日
Top
微信扫码咨询专知VIP会员