In this paper we develop a likelihood-free approach for population calibration, which involves finding distributions of model parameters when fed through the model produces a set of outputs that matches available population data. Unlike most other approaches to population calibration, our method produces uncertainty quantification on the estimated distribution. Furthermore, the method can be applied to any population calibration problem, regardless of whether the model of interest is deterministic or stochastic, or whether the population data is observed with or without measurement error. We demonstrate the method on several examples, including one with real data. We also discuss the computational limitations of the approach. Immediate applications for the methodology developed here exist in many areas of medical research including cancer, COVID-19, drug development and cardiology.
翻译:在本文中,我们为人口校准制定了一种不考虑可能性的办法,即在通过模型提供数据时,发现模型参数的分布情况,得出与现有人口数据相符的一组产出;与大多数其他人口校准方法不同,我们的方法对估计分布产生不确定的量化;此外,该方法可以适用于任何人口校准问题,而不论有关模式是确定性的还是随机性的,也不论人口数据是否与测量错误相符;我们在若干例子中展示了方法,包括一个有真实数据的例子。我们还讨论了这种方法的计算局限性。这里制定的方法在包括癌症、COVID-19、药物研制和心脏学在内的许多医学研究领域立即应用。