Minimum divergence procedures based on the density power divergence and the logarithmic density power divergence have been extremely popular and successful in generating inference procedures which combine a high degree of model efficiency with strong outlier stability. Such procedures are always preferable in practical situations over procedures which achieve their robustness at a major cost of efficiency or are highly efficient but have poor robustness properties. The density power divergence (DPD) family of Basu et al.(1998) and the logarithmic density power divergence (LDPD) family of Jones et al.(2001) provide flexible classes of divergences where the adjustment between efficiency and robustness is controlled by a single, real, non-negative parameter. The usefulness of these two families of divergences in statistical inference makes it meaningful to search for other related families of divergences in the same spirit. The DPD family is a member of the class of Bregman divergences, and the LDPD family is obtained by log transformations of the different segments of the divergences within the DPD family. Both the DPD and LDPD families lead to the Kullback-Leibler divergence in the limiting case as the tuning parameter $\alpha \rightarrow 0$. In this paper we study this relation in detail, and demonstrate that such log transformations can only be meaningful in the context of the DPD (or the convex generating function of the DPD) within the general fold of Bregman divergences, giving us a limit to the extent to which the search for useful divergences could be successful.


翻译:基于密度功率差异和对数密度功率差异的最小差异程序非常受欢迎,并成功地生成了推论程序,这种程序结合了高水平的模型效率与强度的偏差稳定性。在实际情况下,这种程序总是优于以主要效率成本实现稳健性或高度效率但又具有弱强性特性的程序。Basu等人(1998年)的密度功率差异(DPD)家族和Jones等人(2001年)的对数密度能力差异(LDPD)家族提供了灵活的差异类别,其中效率和稳健性之间的调整由一个单一的、真实的、非负式的搜索参数加以控制。这两个统计推论差异的两大类别在实际情况下比以同样精神寻找其他相关的强度程序更可取。DPD家族是Bregman 差异类别的成员,而LDPD家族可以通过D家族不同部分的日志变化获得。 DPD和LDD家庭在向 Kurback-leiber 的数值差异范围中,DPDD-lebrequenal 范围中,我们只能通过这个缩缩缩缩缩的参数来测试。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Adaptive Synthetic Characters for Military Training
Arxiv
46+阅读 · 2021年1月6日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员