Consider the problem of matching two independent i.i.d. samples of size $N$ from two distributions $P$ and $Q$ in $\mathbb{R}^d$. For an arbitrary continuous cost function, the optimal assignment problem looks for the matching that minimizes the total cost. We consider instead in this paper the problem where each matching is endowed with a Gibbs probability weight proportional to the exponential of the negative total cost of that matching. Viewing each matching as a joint distribution with $N$ atoms, we then take a convex combination with respect to the above Gibbs probability measure. We show that this resulting random joint distribution converges, as $N\rightarrow \infty$, to the solution of a variational problem, introduced by F\"ollmer, called the Schr\"odinger problem. We also derive the first two error terms of orders $N^{-1/2}$ and $N^{-1}$, respectively. This gives us central limit theorems for integrated test functions, including for the cost of transport, and second order Gaussian chaos limits when the limiting Gaussian variance is zero. The proofs are based on a novel chaos decomposition of the discrete Schr\"odinger bridge by polynomial functions of the pair of empirical distributions as the first and second order Taylor approximations in the space of measures. This is achieved by extending the Hoeffding decomposition from the classical theory of U-statistics.


翻译:考虑将两个独立的i. i. d. 大小样本与两个分配单位的美元和美元美元相匹配的问题。 对于任意的连续成本函数, 最佳分配问题寻求匹配以尽量减少总成本。 我们在本文件中考虑的问题是, 每个匹配单位的概率比重与该匹配负总成本的指数成正比。 将每个匹配单位与美元原子进行联合分配时, 我们随后将上述Gibbs概率测量值进行交配。 我们显示, 由此产生的随机联合分配( 如 $N\rightrowr\ reinfty$ ), 与F\\\"olmer, 称之为Schr\\\" odinger 问题所引入的变异性问题的解决方案相匹配。 我们还分别得出了顺序 $N ⁇ -1/2} 和 $N ⁇ -1 美元 的首两个错误条件。 这让我们对综合测试功能( 包括运输成本) 进行核心限制, 而第二个顺序是测量点的混乱程度, 也就是在 将摩洛卡 的 度 度 的 度 度 度 度 度 度 的 度 度 的 度分布 的 的 的 的 度 的 的 的 以 以 基 基 基 基 基 度 的 的 的 基 度 基 基 基 的 的 的 度 基 基 度 度 的 度 度 的 基 基 基 基 度 的 的 度 度 的 度 度 度 的 的 度 度 度 基 的 的 基 基 度 度 的 的 基 度 的 基 基 的 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 的 的 的 的 度 度 度 度 度 的 的 度 度 度 度 的 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员