Predicting the binding sites of the target proteins plays a fundamental role in drug discovery. Most existing deep-learning methods consider a protein as a 3D image by spatially clustering its atoms into voxels and then feed the voxelized protein into a 3D CNN for prediction. However, the CNN-based methods encounter several critical issues: 1) defective in representing irregular protein structures; 2) sensitive to rotations; 3) insufficient to characterize the protein surface; 4) unaware of data distribution shift. To address the above issues, this work proposes EquiPocket, an E(3)-equivariant Graph Neural Network (GNN) for binding site prediction. In particular, EquiPocket consists of three modules: the first one to extract local geometric information for each surface atom, the second one to model both the chemical and spatial structure of the protein, and the last one to capture the geometry of the surface via equivariant message passing over the surface atoms. We further propose a dense attention output layer to better alleviate the data distribution shift effect incurred by the variable protein size. Extensive experiments on several representative benchmarks demonstrate the superiority of our framework to the state-of-the-art methods.


翻译:预测目标蛋白质的绑定点在药物发现中起着根本作用。大多数现有的深层学习方法将蛋白质视为3D图像,将其原子在空间上组合成氧化物,然后将氧化蛋白输入到3DCNN,以进行预测。然而,基于CNN的方法遇到了几个关键问题:(1) 代表非正常蛋白结构的缺陷;(2) 对旋转敏感;(3) 不足以描述蛋白表面的特点;(4) 不了解数据分布的变化。为了解决上述问题,这项工作提议EquiPocket(EqiPocket),即E(3)等质图形神经网络(GNNN)进行捆绑定点预测。特别是,EquiPocket由三个模块组成:第一个模块为每个表面原子提取当地几何信息,第二个模块为蛋白质的化学和空间结构建模,最后一个模块为通过传过表面原子的静态信息测量表面的地貌。我们进一步提议一个密集的注意力输出层,以更好地减轻因可变蛋白质大小而产生的数据分布变化效应。在几个有代表性的基准上进行广泛的实验,展示我们框架的优越性方法。

0
下载
关闭预览

相关内容

Surface 是微软公司( Microsoft)旗下一系列使用 Windows 10(早期为 Windows 8.X)操作系统的电脑产品,目前有 Surface、Surface Pro 和 Surface Book 三个系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由时任微软 CEO 史蒂夫·鲍尔默发布于在洛杉矶举行的记者会,2012 年 10 月 26 日上市销售。
专知会员服务
59+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
101+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员