Holographic displays can generate light fields by dynamically modulating the wavefront of a coherent beam of light using a spatial light modulator, promising rich virtual and augmented reality applications. However, the limited spatial resolution of existing dynamic spatial light modulators imposes a tight bound on the diffraction angle. As a result, today's holographic displays possess low \'{e}tendue, which is the product of the display area and the maximum solid angle of diffracted light. The low \'{e}tendue forces a sacrifice of either the field of view (FOV) or the display size. In this work, we lift this limitation by presenting neural \'{e}tendue expanders. This new breed of optical elements, which is learned from a natural image dataset, enables higher diffraction angles for ultra-wide FOV while maintaining both a compact form factor and the fidelity of displayed contents to human viewers. With neural \'{e}tendue expanders, we achieve 64$\times$ \'{e}tendue expansion of natural images with reconstruction quality (measured in PSNR) over 29dB on simulated retinal-resolution images. As a result, the proposed approach with expansion factor 64$\times$ enables high-fidelity ultra-wide-angle holographic projection of natural images using an 8K-pixel SLM, resulting in a 18.5 mm eyebox size and 2.18 steradians FOV, covering 85\% of the human stereo FOV.
翻译:全息显示可以通过动态调节光束的波端, 使用空间光调器来动态调节光束的波端, 充满丰富的虚拟和增强的现实应用。 然而, 现有的动态空间光调器的空间分辨率有限, 使偏差角的宽度拉紧。 因此, 今天的全息显示拥有低 \ { e} 默认, 这是显示区域的产物, 以及 diffracted 光的最大固态角。 低 =\ { { { { e} 应 迫使视野( FOV) 或显示大小的牺牲。 在这项工作中, 我们通过显示神经 \ { { { { { { e} 到期扩展的扩展器来提高这一限制。 这种新的光学元素从自然图像数据集中学习, 使得超广度视野显示器具有更高的折射角度角度, 同时保持一个压缩格式因素和显示内容对人类观众的忠诚度。 以神经- 18 { = 加速扩张器, 我们实现了64 美元 眼睛- 度 =xxxxx 图像的扩展, 通过自然图像的精确 =xxxxxxxxxxxxxxxxxxxxxx