Semantic segmentation has attracted a large amount of attention in recent years. In robotics, segmentation can be used to identify a region of interest, or \emph{target area}. For example, in the RoboCup Standard Platform League (SPL), segmentation separates the soccer field from the background and from players on the field. For satellite or vehicle applications, it is often necessary to find certain regions such as roads, bodies of water or kinds of terrain. In this paper, we propose a novel approach to real-time target area segmentation based on a newly designed spatial temporal network. The method operates under domain constraints defined by both the robot's hardware and its operating environment . The proposed network is able to run in real-time, working within the constraints of limited run time and computing power. This work is compared against other real time segmentation methods on a dataset generated by a Nao V6 humanoid robot simulating the RoboCup SPL competition. In this case, the target area is defined as the artificial grass field. The method is also tested on a maritime dataset collected by a moving vessel, where the aim is to separate the ocean region from the rest of the image. This dataset demonstrates that the proposed model can generalise to a variety of vision problems.
翻译:近些年来,语义分解已经引起大量关注。 在机器人中, 分解可以用来识别感兴趣的区域, 或\ emph{ 目标区域 。 例如, 在机器人标准平台联盟( SPL) 中, 分解将足球场与背景和球员区分开来。 对于卫星或车辆应用来说, 通常有必要找到某些区域, 如道路、 水体或地形种类等 。 在本文中, 我们提出基于新设计的空间时间网络的实时目标区域分解的新办法 。 该方法可以在机器人硬件及其操作环境所定义的域限制下运行 。 拟议的网络能够实时运行, 在有限的运行时间和计算能力的限制下运行 。 这项工作比对由Nao V6 人类机器人生成的数据集中的其他实时分解方法进行对比, 模拟RoboCup SPL 竞争 。 在本案中, 目标区域被定义为人工草场 。 该方法还在移动容器所收集的海洋数据集中测试 。 该方法还可以在移动的容器上测试, 所收集的海洋数据集成的图像, 目的是展示普通区域 。