Semantic segmentation has attracted a large amount of attention in recent years. In robotics, segmentation can be used to identify a region of interest, or \emph{target area}. For example, in the RoboCup Standard Platform League (SPL), segmentation separates the soccer field from the background and from players on the field. For satellite or vehicle applications, it is often necessary to find certain regions such as roads, bodies of water or kinds of terrain. In this paper, we propose a novel approach to real-time target area segmentation based on a newly designed spatial temporal network. The method operates under domain constraints defined by both the robot's hardware and its operating environment . The proposed network is able to run in real-time, working within the constraints of limited run time and computing power. This work is compared against other real time segmentation methods on a dataset generated by a Nao V6 humanoid robot simulating the RoboCup SPL competition. In this case, the target area is defined as the artificial grass field. The method is also tested on a maritime dataset collected by a moving vessel, where the aim is to separate the ocean region from the rest of the image. This dataset demonstrates that the proposed model can generalise to a variety of vision problems.


翻译:近些年来,语义分解已经引起大量关注。 在机器人中, 分解可以用来识别感兴趣的区域, 或\ emph{ 目标区域 。 例如, 在机器人标准平台联盟( SPL) 中, 分解将足球场与背景和球员区分开来。 对于卫星或车辆应用来说, 通常有必要找到某些区域, 如道路、 水体或地形种类等 。 在本文中, 我们提出基于新设计的空间时间网络的实时目标区域分解的新办法 。 该方法可以在机器人硬件及其操作环境所定义的域限制下运行 。 拟议的网络能够实时运行, 在有限的运行时间和计算能力的限制下运行 。 这项工作比对由Nao V6 人类机器人生成的数据集中的其他实时分解方法进行对比, 模拟RoboCup SPL 竞争 。 在本案中, 目标区域被定义为人工草场 。 该方法还在移动容器所收集的海洋数据集中测试 。 该方法还可以在移动的容器上测试, 所收集的海洋数据集成的图像, 目的是展示普通区域 。

0
下载
关闭预览

相关内容

IEEE信号处理信函(SPL)是每月一次的存档出版物,旨在快速传播原始的,最先进的想法,并在信号,图像,语音,语言和音频处理方面提供及时、重要的贡献。 官网地址:http://dblp.uni-trier.de/db/journals/spl/
【XAUTOML】可解释自动机器学习,27页ppt
专知会员服务
63+阅读 · 2021年4月23日
CVPR 2021 Oral | 室内动态场景中的相机重定位
专知会员服务
16+阅读 · 2021年4月12日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月11日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
VIP会员
相关VIP内容
【XAUTOML】可解释自动机器学习,27页ppt
专知会员服务
63+阅读 · 2021年4月23日
CVPR 2021 Oral | 室内动态场景中的相机重定位
专知会员服务
16+阅读 · 2021年4月12日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员