There has been a dramatic increase in the volume of videos and their related content uploaded to the internet. Accordingly, the need for efficient algorithms to analyse this vast amount of data has attracted significant research interest. An action recognition system based upon human body motions has been proven to interpret videos contents accurately. This work aims to recognize activities of daily living using the ST-GCN model, providing a comparison between four different partitioning strategies: spatial configuration partitioning, full distance split, connection split, and index split. To achieve this aim, we present the first implementation of the ST-GCN framework upon the HMDB-51 dataset. We have achieved 48.88 % top-1 accuracy by using the connection split partitioning approach. Through experimental simulation, we show that our proposals have achieved the highest accuracy performance on the UCF-101 dataset using the ST-GCN framework than the state-of-the-art approach. Finally, accuracy of 73.25 % top-1 is achieved by using the index split partitioning strategy.
翻译:视频数量及其上传到互联网的相关内容急剧增加。 因此,需要高效的算法来分析这大量数据引起了重要的研究兴趣。 基于人体动作的动作识别系统已经证明能够准确解释视频内容。 这项工作旨在承认使用ST-GCN模型的日常生活活动,对四种不同的分割战略进行了比较:空间配置分隔、完全距离分割、连接分割和指数分割。 为此,我们在HMDB-51数据集上首次介绍了ST-GCN框架的实施情况。我们通过使用连接分割法实现了48.88%的最高一级至一级精确度。我们通过实验模拟,显示我们的提案在使用ST-GCN框架的UCF-101数据集上取得了比目前最先进的方法最精确的性能。 最后,通过使用指数分割法,实现了最高一级73.25%的准确性。