There has been a dramatic increase in the volume of videos and their related content uploaded to the internet. Accordingly, the need for efficient algorithms to analyse this vast amount of data has attracted significant research interest. An action recognition system based upon human body motions has been proven to interpret videos contents accurately. This work aims to recognize activities of daily living using the ST-GCN model, providing a comparison between four different partitioning strategies: spatial configuration partitioning, full distance split, connection split, and index split. To achieve this aim, we present the first implementation of the ST-GCN framework upon the HMDB-51 dataset. We have achieved 48.88 % top-1 accuracy by using the connection split partitioning approach. Through experimental simulation, we show that our proposals have achieved the highest accuracy performance on the UCF-101 dataset using the ST-GCN framework than the state-of-the-art approach. Finally, accuracy of 73.25 % top-1 is achieved by using the index split partitioning strategy.


翻译:视频数量及其上传到互联网的相关内容急剧增加。 因此,需要高效的算法来分析这大量数据引起了重要的研究兴趣。 基于人体动作的动作识别系统已经证明能够准确解释视频内容。 这项工作旨在承认使用ST-GCN模型的日常生活活动,对四种不同的分割战略进行了比较:空间配置分隔、完全距离分割、连接分割和指数分割。 为此,我们在HMDB-51数据集上首次介绍了ST-GCN框架的实施情况。我们通过使用连接分割法实现了48.88%的最高一级至一级精确度。我们通过实验模拟,显示我们的提案在使用ST-GCN框架的UCF-101数据集上取得了比目前最先进的方法最精确的性能。 最后,通过使用指数分割法,实现了最高一级73.25%的准确性。

0
下载
关闭预览

相关内容

迁移学习方法在医学图像领域的应用综述
专知会员服务
60+阅读 · 2022年1月6日
专知会员服务
51+阅读 · 2021年9月25日
八篇 ICCV 2019 【图神经网络(GNN)+CV】相关论文
专知会员服务
30+阅读 · 2020年1月10日
ICCV 2019 行为识别/视频理解论文汇总
极市平台
15+阅读 · 2019年9月26日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
行为识别(action recognition)目前的难点在哪?
极市平台
36+阅读 · 2019年2月14日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
【推荐】RNN无损压缩方法DeepZip(附代码)
机器学习研究会
5+阅读 · 2018年1月1日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
11+阅读 · 2018年10月17日
Arxiv
4+阅读 · 2018年7月4日
VIP会员
相关VIP内容
迁移学习方法在医学图像领域的应用综述
专知会员服务
60+阅读 · 2022年1月6日
专知会员服务
51+阅读 · 2021年9月25日
八篇 ICCV 2019 【图神经网络(GNN)+CV】相关论文
专知会员服务
30+阅读 · 2020年1月10日
相关资讯
ICCV 2019 行为识别/视频理解论文汇总
极市平台
15+阅读 · 2019年9月26日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
行为识别(action recognition)目前的难点在哪?
极市平台
36+阅读 · 2019年2月14日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
【推荐】RNN无损压缩方法DeepZip(附代码)
机器学习研究会
5+阅读 · 2018年1月1日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员