Rigid link flapping mechanisms remain the most practical choice for flapping wing micro-aerial vehicles (MAVs) to carry useful payloads and onboard batteries for free flight due to their long-term durability and reliability. However, to achieve high agility and maneuverability-like insects-MAVs with these mechanisms require significant weight reduction. One approach involves using single-DOF planar rigid linkages, which are rarely optimized dimensionally for high lift and low power so that smaller motors and batteries could be used. We integrated a mechanism simulator based on a quasistatic nonlinear finite element method with an unsteady vortex lattice method-based aerodynamic analysis tool within an optimization routine. We optimized three different mechanism topologies from the literature. As a result, significant power savings were observed up to 42% in some cases, due to increased amplitude and higher lift coefficients resulting from optimized asymmetric sweeping velocity profiles. We also conducted an uncertainty analysis that revealed the need for high manufacturing tolerances to ensure reliable mechanism performance. The presented unified computational tool also facilitates the optimal selection of MAV components based on the payload and flight time requirements.
翻译:暂无翻译