This paper aims to develop a linearly implicit structure-preserving numerical scheme for the space fractional sine-Gordon equation, which is based on the newly developed invariant energy quadratization method. First, we reformulate the equation as a canonical Hamiltonian system by virtue of the variational derivative of the functional with fractional Laplacian. Then, we utilize the fractional centered difference formula to discrete the equivalent system derived by the invariant energy quadratization method in space direction, and obtain a conservative semi-discrete scheme. Subsequently, the linearly implicit structure-preserving method is applied for the resulting semi-discrete system to arrive at a fully-discrete conservative scheme. The stability, solvability and convergence in the maximum norm of the numerical scheme are given. Furthermore, a fast algorithm based on the fast Fourier transformation technique is used to reduce the computational complexity in practical computation. Finally, numerical examples are provided to confirm our theoretical analysis results.
翻译:本文旨在为空间分数正弦哥尔登方程式开发一个线性隐含结构保留数字方案,这个方案以新开发的变异能量二次化方法为基础。 首先,我们通过分数拉平式函数函数的变式衍生物,将方程式重新配置为卡通汉密尔顿系统。 然后,我们利用分数中心差异公式将空间方向的异变能量二次化方法产生的等同系统分离开来,并获得一个保守的半分解办法。随后,对由此形成的半分解结构保留系统应用线性隐含结构保留方法,以达成完全分解保守的保守办法。给出了数字方案最大规范的稳定性、可溶性和趋同性。此外,根据快速的Fourier变法使用快速算法来降低实际计算的复杂性。最后,提供了数字示例,以证实我们的理论分析结果。