We explore the feasibility of using triplet neural networks to embed songs based on content-based music similarity. Our network is trained using triplets of songs such that two songs by the same artist are embedded closer to one another than to a third song by a different artist. We compare two models that are trained using different ways of picking this third song: at random vs. based on shared genre labels. Our experiments are conducted using songs from the Free Music Archive and use standard audio features. The initial results show that shallow Siamese networks can be used to embed music for a simple artist retrieval task.
翻译:我们探索使用三重神经网络嵌入基于内容的音乐相似性的歌曲的可行性。 我们的网络是用三重歌曲来训练的, 这样同一名艺术家的两首歌曲就比另一名艺术家的第三首歌更相近。 我们比较了两种模式, 使用不同方式来选择第三首歌曲: 随机对立基于共享类型标签。 我们的实验是使用自由音乐档案馆的歌曲来进行, 并使用标准的音频特征。 初步结果显示浅浅的暹罗网络可以用来嵌入音乐, 用于简单的艺术家检索任务 。