Generation of graphs is a major challenge for real-world tasks that require understanding the complex nature of their non-Euclidean structures. Although diffusion models have achieved notable success in graph generation recently, they are ill-suited for modeling the structural information of graphs since learning to denoise the noisy samples does not explicitly capture the graph topology. To tackle this limitation, we propose a novel generative process that models the topology of graphs by predicting the destination of the process. Specifically, we design the generative process as a mixture of diffusion processes conditioned on the endpoint in the data distribution, which drives the process toward the probable destination. Further, we introduce new training objectives for learning to predict the destination, and discuss the advantages of our generative framework that can explicitly model the graph topology and exploit the inductive bias of the data. Through extensive experimental validation on general graph and 2D/3D molecular graph generation tasks, we show that our method outperforms previous generative models, generating graphs with correct topology with both continuous and discrete features.


翻译:图形的生成是现实世界任务的一项重大挑战,需要了解其非欧洲语言结构的复杂性性质。虽然传播模型最近在图形生成中取得了显著的成功,但是由于学会了隐蔽,吵闹的样本没有明确地捕捉图示的地形学,因此不适合对图形的结构信息进行建模。为了应对这一局限性,我们提议了一个新型的基因化过程,通过预测过程的目的地来模拟图形的地形学。具体地说,我们设计基因化过程作为传播过程的混合体,以数据分布的终点为条件,将过程推向可能的目的地。此外,我们引入新的培训目标,学习预测目的地,并讨论我们的基因化框架的优点,该框架可以明确地建模图形的地形学,并利用数据的感化偏差。我们通过对一般图形和2D/3D分子图生成任务进行广泛的实验性验证,显示我们的方法超越了以前的基因化模型,产生具有连续和离散特性的正确地形学的图表。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
44+阅读 · 2022年9月6日
Arxiv
18+阅读 · 2020年10月9日
Arxiv
15+阅读 · 2020年2月5日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员