Granular flow problems characterized by large deformations are widespread in various applications, including coastal and geotechnical engineering. The paper deals with the application of a rigid-perfectly plastic two-phase model extended by the Drucker-Prager yield criterion to simulate granular media with a finite volume flow solver (FV). The model refers to the combination of a Bingham fluid and an Eulerian strain measure to assess the failure region of granular dam slides. A monolithic volume-of-fluid (VoF) method is used to distinguish between the air and granular phases, both governed by the incompressible Navier-Stokes equations. The numerical framework enables modeling of large displacements and arbitrary shapes for large-scale applications. The displayed validation and verification focuses on the rigid-perfectly plastic material model for non-cohesive and cohesive materials with varying angles of repose. Results indicate a good agreement of the predicted soil surface and strain results with experimental and numerical data.
翻译:暂无翻译