Predicting the mechanics of large structural networks, such as beam-based architected materials, requires a multiscale computational strategy that preserves information about the discrete structure while being applicable to large assemblies of struts. Especially the fracture properties of such beam lattices necessitate a two-scale modeling strategy, since the fracture toughness depends on discrete beam failure events, while the application of remote loads requires large simulation domains. As classical homogenization techniques fail in the absence of a separation of scales at the crack tip, we present a concurrent multiscale technique: a fully-nonlocal quasicontinuum (QC) multi-lattice formulation for beam networks, based on a conforming mesh. Like the original atomistic QC formulation, we maintain discrete resolution where needed (such as around a crack tip) while efficiently coarse-graining in the remaining simulation domain. A key challenge is a suitable model in the coarse-grained domain, where classical QC uses affine interpolations. This formulation fails in bending-dominated lattices, as it overconstrains the lattice by preventing bending without stretching of beams. Therefore, we here present a beam QC formulation based on mixed-order interpolation in the coarse-grained region -- combining the efficiency of linear interpolation where possible with the accuracy advantages of quadratic interpolation where needed. This results in a powerful computational framework, which, as we demonstrate through our validation and benchmark examples, overcomes the deficiencies of previous QC formulations and enables, e.g., the prediction of the fracture toughness and the diverse nature of stress distributions of stretching- and bending-dominated beam lattices in two and three dimensions.
翻译:暂无翻译