Recent work on curvilinear structure segmentation has mostly focused on backbone network design and loss engineering. The challenge of collecting labelled data, an expensive and labor intensive process, has been overlooked. While labelled data is expensive to obtain, unlabelled data is often readily available. In this work, we propose SemiCurv, a semi-supervised learning (SSL) framework for curvilinear structure segmentation that is able to utilize such unlabelled data to reduce the labelling burden. Our framework addresses two key challenges in formulating curvilinear segmentation in a semi-supervised manner. First, to fully exploit the power of consistency based SSL, we introduce a geometric transformation as strong data augmentation and then align segmentation predictions via a differentiable inverse transformation to enable the computation of pixel-wise consistency. Second, the traditional mean square error (MSE) on unlabelled data is prone to collapsed predictions and this issue exacerbates with severe class imbalance (significantly more background pixels). We propose a N-pair consistency loss to avoid trivial predictions on unlabelled data. We evaluate SemiCurv on six curvilinear segmentation datasets, and find that with no more than 5% of the labelled data, it achieves close to 95% of the performance relative to its fully supervised counterpart.
翻译:最近关于卷尾线结构分割部分的工作主要集中在主干网设计和损失工程上。收集贴标签数据的挑战,是一个昂贵的劳动密集型过程,已被忽略。尽管贴标签数据是昂贵的,但通常很容易获得无标签数据。在这项工作中,我们提议为卷尾线结构分割部分建立一个半监督的学习框架SimCurv,这个半监督的学习框架能够利用这种未贴标签的数据来减少标签负担。我们的框架处理以半监督的方式制定卷尾线分割的两个关键挑战。首先,为了充分利用基于SSL的一致性能力,我们引入几何转换,作为强大的数据增强功能,然后通过不同的反向转换来调整分解预测,以便能够计算像素的一致性。第二,在未贴标签数据上的传统平均方差(MSE)很容易被挫败预测,而这一问题会因严重的等级不平衡而加剧(更明显地是背景像素)。我们提议N-pair一致性损失,以避免在未贴标签的数据上出现微不足道的预测。我们用Semurv进行精确的转换,然后通过不同的反向65项数据进行完全的对比,我们用Simurv进行精确的对比,我们用它的数据来评估,直到95的对比数据,比接近接近5。我们用它。我们用它能的对比数据定值数据比近了95。