The rising use of Large Language Models (LLMs) to create and disseminate malware poses a significant cybersecurity challenge due to their ability to generate and distribute attacks with ease. A single prompt can initiate a wide array of malicious activities. This paper addresses this critical issue through a multifaceted approach. First, we provide a comprehensive overview of LLMs and their role in malware detection from diverse sources. We examine five specific applications of LLMs: Malware honeypots, identification of text-based threats, code analysis for detecting malicious intent, trend analysis of malware, and detection of non-standard disguised malware. Our review includes a detailed analysis of the existing literature and establishes guiding principles for the secure use of LLMs. We also introduce a classification scheme to categorize the relevant literature. Second, we propose performance metrics to assess the effectiveness of LLMs in these contexts. Third, we present a risk mitigation framework designed to prevent malware by leveraging LLMs. Finally, we evaluate the performance of our proposed risk mitigation strategies against various factors and demonstrate their effectiveness in countering LLM-enabled malware. The paper concludes by suggesting future advancements and areas requiring deeper exploration in this fascinating field of artificial intelligence.
翻译:暂无翻译