In Hotelling's model of spatial competition, a unit mass of voters is distributed in the interval $[0,1]$ (with their location corresponding to their political persuasion), and each of $m$ candidates selects as a strategy his distinct position in this interval. Each voter votes for the nearest candidate, and candidates choose their strategy to maximize their votes. It is known that if there are more than two candidates, equilibria may not exist in this model. It was unknown, however, how close to an equilibrium one could get. Our work studies approximate equilibria in this model, where a strategy profile is an (additive) $\epsilon$-equilibria if no candidate can increase their votes by $\epsilon$, and provides tight or nearly-tight bounds on the approximation $\epsilon$ achievable. We show that for 3 candidates, for any distribution of the voters, $\epsilon \ge 1/12$. Thus, somewhat surprisingly, for any distribution of the voters and any strategy profile of the candidates, at least $1/12$th of the total votes is always left ``on the table.'' Extending this, we show that in the worst case, there exist voter distributions for which $\epsilon \ge 1/6$, and this is tight: one can always compute a $1/6$-approximate equilibria. We then study the general case of $m$ candidates, and show that as $m$ grows large, we get closer to an exact equilibrium: one can always obtain an $1/(m+1)$-approximate equilibria in polynomial time. We show this bound is asymptotically tight, by giving voter distributions for which $\epsilon \ge 1/(m+3)$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
A Survey on Data Augmentation for Text Classification
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员