In this research, we propose an online basis enrichment strategy within the framework of a recently developed constraint energy minimizing generalized multiscale discontinuous Galerkin method (CEM-GMsDGM). Combining the technique of oversampling, one makes use of the information of the current residuals to adaptively construct basis functions in the online stage to reduce the error of multiscale approximation. A complete analysis of the method is presented, which shows the proposed online enrichment leads to a fast convergence from multiscale approximation to the fine-scale solution. The error reduction can be made sufficiently large by suitably selecting oversampling regions and the number of oversampling layers. Further, the convergence rate of the enrichment algorithm depends on a factor of exponential decay regarding the number of oversampling layers and a user-defined parameter. Numerical results are provided to demonstrate the effectiveness and efficiency of the proposed online adaptive algorithm.
翻译:在这项研究中,我们提议在最近开发的一种限制性限制能源的框架内,采用在线基础浓缩战略,最大限度地减少通用的多尺度不连续的Galerkin方法(CEM-GMsDGM),结合过度抽样技术,在在线阶段利用当前残留物的信息到适应性构建基础功能,以减少多尺度近似的错误;对方法进行全面分析,表明拟议的在线浓缩能够迅速从多尺度近似到微尺度解决方案的趋同;通过适当选择过度抽样区域和过度抽样层的数量,可以使错误减少幅度足够大;此外,浓缩算法的趋同率取决于关于过度抽样层数量和用户定义参数的指数衰减系数;提供数字结果,以证明拟议的在线适应算法的有效性和效率。