In this research, we propose an online basis enrichment strategy within the framework of a recently developed constraint energy minimizing generalized multiscale discontinuous Galerkin method (CEM-GMsDGM). Combining the technique of oversampling, one makes use of the information of the current residuals to adaptively construct basis functions in the online stage to reduce the error of multiscale approximation. A complete analysis of the method is presented, which shows the proposed online enrichment leads to a fast convergence from multiscale approximation to the fine-scale solution. The error reduction can be made sufficiently large by suitably selecting oversampling regions and the number of oversampling layers. Further, the convergence rate of the enrichment algorithm depends on a factor of exponential decay regarding the number of oversampling layers and a user-defined parameter. Numerical results are provided to demonstrate the effectiveness and efficiency of the proposed online adaptive algorithm.


翻译:在这项研究中,我们提议在最近开发的一种限制性限制能源的框架内,采用在线基础浓缩战略,最大限度地减少通用的多尺度不连续的Galerkin方法(CEM-GMsDGM),结合过度抽样技术,在在线阶段利用当前残留物的信息到适应性构建基础功能,以减少多尺度近似的错误;对方法进行全面分析,表明拟议的在线浓缩能够迅速从多尺度近似到微尺度解决方案的趋同;通过适当选择过度抽样区域和过度抽样层的数量,可以使错误减少幅度足够大;此外,浓缩算法的趋同率取决于关于过度抽样层数量和用户定义参数的指数衰减系数;提供数字结果,以证明拟议的在线适应算法的有效性和效率。

0
下载
关闭预览

相关内容

多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
自然语言处理顶会EMNLP2018接受论文列表!
专知
87+阅读 · 2018年8月26日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年4月24日
VIP会员
相关VIP内容
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
自然语言处理顶会EMNLP2018接受论文列表!
专知
87+阅读 · 2018年8月26日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员