Large optimization problems with hard constraints arise in many settings, yet classical solvers are often prohibitively slow, motivating the use of deep networks as cheap "approximate solvers." Unfortunately, naive deep learning approaches typically cannot enforce the hard constraints of such problems, leading to infeasible solutions. In this work, we present Deep Constraint Completion and Correction (DC3), an algorithm to address this challenge. Specifically, this method enforces feasibility via a differentiable procedure, which implicitly completes partial solutions to satisfy equality constraints and unrolls gradient-based corrections to satisfy inequality constraints. We demonstrate the effectiveness of DC3 in both synthetic optimization tasks and the real-world setting of AC optimal power flow, where hard constraints encode the physics of the electrical grid. In both cases, DC3 achieves near-optimal objective values while preserving feasibility.
翻译:在许多环境下,都出现了巨大的优化问题,困难重重,但典型的解决方案往往过于缓慢,促使人们利用深层网络作为廉价的“近似解决方案 ” 。 不幸的是,天真的深层次的学习方法通常无法强制实施这些问题的硬性限制,从而导致不可行的解决方案。 在这项工作中,我们提出了深层限制完成和校正(DC3)的算法来应对这一挑战。 具体地说,这种方法通过不同的程序实施可行性,其中隐含了满足平等制约的局部解决方案,并解除了基于梯度的校正,以满足不平等的制约。 我们显示了DC3在合成优化任务和AC最佳电力流现实世界环境中的有效性,在这两种情况下,DC3在保留可行性的同时实现了接近最佳的客观价值。