In this paper, we introduce a multiscale framework based on adaptive edge basis functions to solve second-order linear elliptic PDEs with rough coefficients. One of the main results is that we prove the proposed multiscale method achieves nearly exponential convergence in the approximation error with respect to the computational degrees of freedom. Our strategy is to perform an energy orthogonal decomposition of the solution space into a coarse scale component comprising $a$-harmonic functions in each element of the mesh, and a fine scale component named the bubble part that can be computed locally and efficiently. The coarse scale component depends entirely on function values on edges. Our approximation on each edge is made in the Lions-Magenes space $H_{00}^{1/2}(e)$, which we will demonstrate to be a natural and powerful choice. We construct edge basis functions using local oversampling and singular value decomposition. When local information of the right-hand side is adaptively incorporated into the edge basis functions, we prove a nearly exponential convergence rate of the approximation error. Numerical experiments validate and extend our theoretical analysis; in particular, we observe no obvious degradation in accuracy for high-contrast media problems.


翻译:在本文中,我们引入一个基于适应边缘功能的多尺度框架, 以解决二级线性椭圆形 PDE, 并使用粗略的系数。 其中一项主要结果是, 我们证明建议的多尺度方法在计算自由度的近似误差中几乎达到指数性趋同。 我们的战略是将解决方案空间的能量正方分解成一个粗略的缩放组件, 包括网格中每个元素的$- 调和函数, 以及一个微小的缩放组件, 命名为可以本地和高效计算的泡泡部分。 粗略的缩放组件完全取决于边缘的函数值 。 我们每个边缘的近似值是在狮子- 兆格内空间 $H ⁇ 00 ⁇ 1/2} (e) $(e) $, 我们将证明这是一个自然和强大的选择 。 我们用本地的过度采样和单值分解配置来构建边缘基函数。 当右侧的本地信息被适应地融入边基函数时, 我们证明近乎指数融合速度的加速率率率率 。 Numerical 实验验证并扩展我们的理论分析; 特别是, 我们观察高偏差问题的精确度 。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
【ICML2020】多视角对比图表示学习,Contrastive Multi-View GRL
专知会员服务
79+阅读 · 2020年6月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
4+阅读 · 2018年11月20日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
VIP会员
Top
微信扫码咨询专知VIP会员