Multimodal data are now prevailing in scientific research. A central question in multimodal integrative analysis is to understand how two data modalities associate and interact with each other given another modality or demographic variables. The problem can be formulated as studying the associations among three sets of random variables, a question that has received relatively less attention in the literature. In this article, we propose a novel generalized liquid association analysis method, which offers a new and unique angle to this important class of problems of studying three-way associations. We extend the notion of liquid association of \citet{li2002LA} from the univariate setting to the sparse, multivariate, and high-dimensional setting. We establish a population dimension reduction model, transform the problem to sparse Tucker decomposition of a three-way tensor, and develop a higher-order orthogonal iteration algorithm for parameter estimation. We derive the non-asymptotic error bound and asymptotic consistency of the proposed estimator, while allowing the variable dimensions to be larger than and diverge with the sample size. We demonstrate the efficacy of the method through both simulations and a multimodal neuroimaging application for Alzheimer's disease research.
翻译:目前,科学研究中普遍存在多式数据。多式综合分析的一个中心问题是了解两种数据模式如何联系和相互作用,并取决于另一种模式或人口变量。问题可以分为研究三组随机变量之间的关联,这个问题在文献中相对较少注意。在本篇文章中,我们提出一种新的普遍化液联结分析方法,为研究三路联系的这一重要问题提供了一个新的和独特的角度。我们把“citet{li2002LA}”的液体联系概念从单方形环境扩大到稀疏、多变和高维度环境。我们建立了人口规模减少模型,将问题转化为三道高调的稀疏塔克脱形变异,并开发了参数估计的更高顺序或多位变异算算法。我们从中得出了拟议测算器的不依赖性错误的界限和狭义一致性,同时允许变量的维度大于和与样本大小的差异。我们通过模拟和对ASMAIS疾病进行自动神经成像的应用来展示该方法的功效。