Clinical trials are critical in advancing medical treatments but often suffer from immense time and financial burden. Advances in statistical methodologies and artificial intelligence (AI) present opportunities to address these inefficiencies. Here we introduce Prognostic Covariate-Adjusted Mixed Models for Repeated Measures (PROCOVA-MMRM) as an advantageous combination of prognostic covariate adjustment (PROCOVA) and Mixed Models for Repeated Measures (MMRM). PROCOVA-MMRM utilizes time-matched prognostic scores generated from AI models to enhance the precision of treatment effect estimators for longitudinal continuous outcomes, enabling reductions in sample size and enrollment times. We first provide a description of the background and implementation of PROCOVA-MMRM, followed by two case study reanalyses where we compare the performance of PROCOVA-MMRM versus the unadjusted MMRM. These reanalyses demonstrate significant improvements in statistical power and precision in clinical indications with unmet medical need, specifically Alzheimer's Disease (AD) and Amyotrophic Lateral Sclerosis (ALS). We also explore the potential for sample size reduction with the prospective implementation of PROCOVA-MMRM, finding that the same or better results could have been achieved with fewer participants in these historical trials if the enhanced precision provided by PROCOVA-MMRM had been prospectively leveraged. We also confirm the robustness of the statistical properties of PROCOVA-MMRM in a variety of realistic simulation scenarios. Altogether, PROCOVA-MMRM represents a rigorous method of incorporating advances in the prediction of time-matched prognostic scores generated by AI into longitudinal analysis, potentially reducing both the cost and time required to bring new treatments to patients while adhering to regulatory standards.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员