Deep learning shows high potential for many medical image analysis tasks. Neural networks can work with full-size data without extensive preprocessing and feature generation and, thus, information loss. Recent work has shown that the morphological difference in specific brain regions can be found on MRI with the means of Convolution Neural Networks (CNN). However, interpretation of the existing models is based on a region of interest and can not be extended to voxel-wise image interpretation on a whole image. In the current work, we consider the classification task on a large-scale open-source dataset of young healthy subjects -- an exploration of brain differences between men and women. In this paper, we extend the previous findings in gender differences from diffusion-tensor imaging on T1 brain MRI scans. We provide the voxel-wise 3D CNN interpretation comparing the results of three interpretation methods: Meaningful Perturbations, Grad CAM and Guided Backpropagation, and contribute with the open-source library.
翻译:深层学习显示许多医学图像分析任务的潜力很大。神经网络可以在没有广泛的预处理和特征生成的情况下利用全尺寸数据来工作,而没有广泛的预处理和特征生成,从而造成信息损失。最近的工作表明,在磁共振神经网络(CNN)的扫描手段下,可以在磁共振脑区域发现特定脑区域的形态差异。然而,对现有模型的解释是基于一个感兴趣的区域,不能扩大到对整个图像的对oxel的图像解释。在目前的工作中,我们认为,关于年轻健康对象的大规模开放源数据集的分类任务 -- -- 探索男女之间的大脑差异。在本文中,我们扩展了以前在T1脑MRI扫描中从扩散-摄像学中得出的性别差异。我们提供了Voxel-with 3DCNN的解析,比较了三种解释方法的结果:有意义的扰动、格拉德 CAM和引导反演化,并为开放源图书馆作出了贡献。