Artificial neural networks (ANNs), specifically deep learning networks, have often been labeled as black boxes due to the fact that the internal representation of the data is not easily interpretable. In our work, we illustrate that an ANN, trained using sparse coding under specific sparsity constraints, yields a more interpretable model than the standard deep learning model. The dictionary learned by sparse coding can be more easily understood and the activations of these elements creates a selective feature output. We compare and contrast our sparse coding model with an equivalent feed forward convolutional autoencoder trained on the same data. Our results show both qualitative and quantitative benefits in the interpretation of the learned sparse coding dictionary as well as the internal activation representations.
翻译:人工神经网络,特别是深层学习网络,往往被贴上黑盒标签,因为数据的内部表述不容易解释。我们在工作中指出,在特定的宽度限制下,训练有素使用稀疏编码的人工神经网络比标准的深层学习模式更具有解释性。通过稀疏编码学得的字典可以更容易理解,这些元素的激活产生了选择性特征输出。我们比较和比较了我们稀疏的编码模式和以同一数据培训的等量的进料前相联自动编码器。我们的结果显示,在解释知识稀疏编码词典和内部激活说明方面,在质量和数量上都有好处。