Nearshore bathymetry, the topography of the ocean floor in coastal zones, is vital for predicting the surf zone hydrodynamics and for route planning to avoid subsurface features. Hence, it is increasingly important for a wide variety of applications, including shipping operations, coastal management, and risk assessment. However, direct high resolution surveys of nearshore bathymetry are rarely performed due to budget constraints and logistical restrictions. Another option when only sparse observations are available is to use Gaussian Process regression (GPR), also called Kriging. But GPR has difficulties recognizing patterns with sharp gradients, like those found around sand bars and submerged objects, especially when observations are sparse. In this work, we present several deep learning-based techniques to estimate nearshore bathymetry with sparse, multi-scale measurements. We propose a Deep Neural Network (DNN) to compute posterior estimates of the nearshore bathymetry, as well as a conditional Generative Adversarial Network (cGAN) that samples from the posterior distribution. We train our neural networks based on synthetic data generated from nearshore surveys provided by the U.S.\ Army Corps of Engineer Field Research Facility (FRF) in Duck, North Carolina. We compare our methods with Kriging on real surveys as well as surveys with artificially added sharp gradients. Results show that direct estimation by DNN gives better predictions than Kriging in this application. We use bootstrapping with DNN for uncertainty quantification. We also propose a method, named DNN-Kriging, that combines deep learning with Kriging and shows further improvement of the posterior estimates.


翻译:近岸水深测量是沿海地区洋底的地形,对于预测冲浪带水力动力学和避免地表下地貌特征的路线规划至关重要。因此,对于包括航运作业、沿海管理和风险评估在内的各种应用,对近岸水深测量进行直接高分辨率调查越来越重要。然而,由于预算限制和后勤限制,很少对近岸水深测量进行直接高分辨率调查。在只有少量观测的情况下,另一个选择是使用Gaussian进程回归(GPR),也称为Kriging。但是GPR难以识别与海平面和淹没物体相隔的急剧梯度模式,特别是当观测稀少时。在这项工作中,我们提出了几种基于深岸水深层水深层水力动力学的基于学习的技术,以分散的多尺度测量来估计近岸水深水深深水深水深水深水深地貌测量。我们提议建立一个深心深神经网络(DNNNNN),以及一个有条件的GANT Aversarial 网络(CAN ) 采集样本分布。我们根据近岸勘测得到的合成数据,我们通过U.S.S.S\\/BAR Stal Stal Stud Stro Stududy 进行实地勘测, 和我们更精确的实地勘测算,我们用SB(我们用SB) 的实地勘测算法,我们用SDLILIF) 和K) 的实地测算法展示的实地勘测显示的实地勘测算法展示的实地测算法展示的实地测算法展示了这个结果。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
专知会员服务
59+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
已删除
将门创投
4+阅读 · 2018年6月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
3+阅读 · 2019年6月5日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
7+阅读 · 2018年12月26日
VIP会员
相关资讯
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
已删除
将门创投
4+阅读 · 2018年6月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员