3D point clouds play pivotal roles in various safety-critical fields, such as autonomous driving, which desires the corresponding deep neural networks to be robust to adversarial perturbations. Though a few defenses against adversarial point cloud classification have been proposed, it remains unknown whether they can provide real robustness. To this end, we perform the first security analysis of state-of-the-art defenses and design adaptive attacks on them. Our 100% adaptive attack success rates demonstrate that current defense designs are still vulnerable. Since adversarial training (AT) is believed to be the most effective defense, we present the first in-depth study showing how AT behaves in point cloud classification and identify that the required symmetric function (pooling operation) is paramount to the model's robustness under AT. Through our systematic analysis, we find that the default used fixed pooling operations (e.g., MAX pooling) generally weaken AT's performance in point cloud classification. Still, sorting-based parametric pooling operations can significantly improve the models' robustness. Based on the above insights, we further propose DeepSym, a deep symmetric pooling operation, to architecturally advance the adversarial robustness under AT to 47.0% without sacrificing nominal accuracy, outperforming the original design and a strong baseline by 28.5% ($\sim 2.6 \times$) and 6.5%, respectively, in PointNet.
翻译:3D点云在各种安全关键领域发挥着关键作用, 比如自动驾驶, 它希望相应的深神经网络能够稳健到对抗性扰动。 虽然已经提出了一些对抗性点云的防守, 但仍不清楚它们能否提供真正的坚固性。 为此, 我们对最先进的防御进行第一次安全分析, 并设计适应性攻击, 我们100%的适应性攻击成功率都表明当前的防御设计仍然脆弱。 由于据认为对抗性训练( AT) 是最有效的防御, 我们首次提出深入研究, 显示AT在点云分类中的行为, 并查明所需的对称功能( 合并操作) 是否对AT 下的模型的坚固性至关重要。 我们通过系统分析发现, 默认使用固定的集合操作( 如 MAX 集合) 总体上削弱了AT 在点云分类中的性。 然而, 以排序为基础的对等式集合操作可以大大改善模型的坚固性。 基于上述的洞察, 我们进一步提议, 深Symall $, 深度的对称性功能性功能功能( 集合操作) 在初始设计中, 28ADRimalimimimimimimimimimalimalim 10的精确度下, 。