Object detection has made great progress in the past few years along with the development of deep learning. However, most current object detection methods are resource hungry, which hinders their wide deployment to many resource restricted usages such as usages on always-on devices, battery-powered low-end devices, etc. This paper considers the resource and accuracy trade-off for resource-restricted usages during designing the whole object detection framework. Based on the deeply supervised object detection (DSOD) framework, we propose Tiny-DSOD dedicating to resource-restricted usages. Tiny-DSOD introduces two innovative and ultra-efficient architecture blocks: depthwise dense block (DDB) based backbone and depthwise feature-pyramid-network (D-FPN) based front-end. We conduct extensive experiments on three famous benchmarks (PASCAL VOC 2007, KITTI, and COCO), and compare Tiny-DSOD to the state-of-the-art ultra-efficient object detection solutions such as Tiny-YOLO, MobileNet-SSD (v1 & v2), SqueezeDet, Pelee, etc. Results show that Tiny-DSOD outperforms these solutions in all the three metrics (parameter-size, FLOPs, accuracy) in each comparison. For instance, Tiny-DSOD achieves 72.1% mAP with only 0.95M parameters and 1.06B FLOPs, which is by far the state-of-the-arts result with such a low resource requirement.
翻译:过去几年来,随着深层学习的发展,物体探测工作取得了很大进展。然而,大多数当前天体探测方法都缺乏资源,妨碍了将它们广泛用于许多资源有限的使用,例如使用始终使用装置、电池动力低端装置等。本文件考虑了设计整个天体探测框架期间资源限制使用量的资源和准确性权衡。根据深入监督的天体探测框架,我们提议将小点-DSOD专门用于资源限制的用途。Tiny-DSOD引入两个创新和超高效的建筑块:基于主干和深极地地极地平流网络(D-OPN)的深度密度块(DDB)。我们根据三个著名的基准(PASCAL VOC 2007、KITTI和CO)进行了广泛的实验,并将小点-DSOD与最先进的超效率天体探测方法,如小点-YOLO、移动网络-SDD(v1 & v2)、Squeze-de-defral-strual) 和深点-ODF-D-DS-S-ral-SDS-I-S-AFDS-FDSDAFDS-S-S-S-S-FT-S-S-FDFDS-S-S-S-S-FS-S-S-FDFDFDFS-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-SD-S-SD-SDFT-SB-SDFs-SDFT-SDM-S-S-S-SD-SD-SD-S-S-S-S-S-S-S-S-S-S-S-SD-SD-SD-S-SB-S-SDSDSB-SDSDSDSDSB-S-S-S-SB-SB-SB-SB-S-S-S-S-S-S-S-SDS-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S