We study the efficiency of the multisection method for univariate nonlinear equations, relative to that for the well-known bisection method. We show that there is a minimal effort algorithm that uses more sections than the bisection method, although this optimal algorithm is problem dependent. The number of sections required for optimality is determined by means of a Lambert W function.
翻译:我们研究的是单向非线性方程式的多部分法效率,与众所周知的分部分法相比。我们发现,使用比分部分法多部分的最小努力算法,尽管这种最佳算法有问题。 优化所需的部分数量由兰伯特·W函数决定。</s>