The human face conveys a significant amount of information. Through facial expressions, the face is able to communicate numerous sentiments without the need for verbalisation. Visual emotion recognition has been extensively studied. Recently several end-to-end trained deep neural networks have been proposed for this task. However, such models often lack generalisation ability across datasets. In this paper, we propose the Deep Facial Expression Vector ExtractoR (DeepFEVER), a new deep learning-based approach that learns a visual feature extractor general enough to be applied to any other facial emotion recognition task or dataset. DeepFEVER outperforms state-of-the-art results on the AffectNet and Google Facial Expression Comparison datasets. DeepFEVER's extracted features also generalise extremely well to other datasets -- even those unseen during training -- namely, the Real-World Affective Faces (RAF) dataset.
翻译:人类脸部传递了大量信息。 通过面部表情, 脸部可以无需言语就能传达许多情感。 视觉情感识别已经进行了广泛的研究。 最近, 提出了几项经过训练的端到端深神经网络来完成这项任务。 但是, 这些模型往往缺乏跨数据集的概括能力。 在本文中, 我们建议使用深面部表达矢量提取器( DeepFever), 这是一种基于深层学习的新方法, 它可以学习足以应用于任何其他面部情感识别任务或数据集的视觉特征提取器。 DeepFEWE 超越了 AfectNet 和 Google Facial 表达比较数据集的艺术状态结果。 DeepFever 提取的功能也非常接近其他数据集 -- 甚至是培训过程中看不见的数据集 -- 即真实世界的情感脸部数据集。