In this paper, we introduce SDM-UniPS, a groundbreaking Scalable, Detailed, Mask-free, and Universal Photometric Stereo network. Our approach can recover astonishingly intricate surface normal maps, rivaling the quality of 3D scanners, even when images are captured under unknown, spatially-varying lighting conditions in uncontrolled environments. We have extended previous universal photometric stereo networks to extract spatial-light features, utilizing all available information in high-resolution input images and accounting for non-local interactions among surface points. Moreover, we present a new synthetic training dataset that encompasses a diverse range of shapes, materials, and illumination scenarios found in real-world scenes. Through extensive evaluation, we demonstrate that our method not only surpasses calibrated, lighting-specific techniques on public benchmarks, but also excels with a significantly smaller number of input images even without object masks.
翻译:本文介绍SDM-UniPS,一种颠覆性的可扩展、详细、无需掩模且通用的光度测量网络。即使在未知的、空间可变的光照条件下,在不受控制的环境中拍摄的图像,我们的方法也能够恢复令人惊叹的复杂面法线图,与三维扫描仪的质量相媲美。我们已经将以前的通用光度测量网络扩展到提取空间光特征,利用高分辨率输入图像中的所有可用信息并考虑表面点之间的非局部相互作用。此外,我们还提出了一种新的合成训练数据集,涵盖了发现于真实场景中的各种形状、材料和照明情景。通过广泛的评估,我们证明了我们的方法不仅在公共基准测试中超越了校准的、光照特定的技术,甚至在没有对象掩模的情况下,只需要较少的输入图像,也能够表现出色。