项目名称: 极端条件下多铁材料ErMnO3局域结构的XAFS表征

项目编号: No.11305199

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 储胜启

作者单位: 中国科学院高能物理研究所

项目金额: 30万元

中文摘要: 近年来,多铁性材料以其独特的物理特性和广阔的应用前景,引起了科学家们极大的关注。实验证实,六方ErMnO3在80K以下的低温,同时存在铁电有序和反铁磁有序。这种磁电耦合的多铁性材料,通过外加电场或磁场可以实现电磁互控,未来在信息存储、传感器等方面将带来革命性的变化。但是由于ErMnO3中磁电耦合所要求的温度极低且耦合强度较弱,又极大地限制了其可能的应用,而且对于磁电耦合多铁性的物理机制尚不明确。目前关于ErMnO3在低温和高压下结构变化的详细情况还没有进行系统地研究,本研究课题将利用低温原位和高压原位XAFS实验方法,以及一种全新的高压调制差分XAFS实验方法(实验精度比传统方法提高了一个数量级),对六方ErMnO3材料在低温以及高压实验条件下的结构变化进行细致研究,从局域角度探究晶格与铁电性、磁性之间的耦合作用,为揭示其多铁性效应的微观起源和物理机制提供新的思路。

中文关键词: 多铁性材料;ErMnO3;极端条件;X射线吸收精细结构;

英文摘要: Multiferroic materials have attracted great attention in recent years because of their unique physical properties and promising application prospect. It has been proved by experiments that ferroelectric and antiferromagnetic order coexist in hexagonal ErMnO3 below the temperature 80 K. Due to the magnetic-ferroelectirc coupling, the compounds like ErMnO3 are considered the most promising cnadidates to achieve mutual control of magnetic and ferroelectric properties, and have potential applications such as information storage, transducers, actuators and so on.However, the coupling between ferroelectricity and magnetism in ErMnO3 requires very low temperature and the coupling strength is weak, which impose great restricitions on the possible applications. The exact physical mechanism of magnetoelectric coupling effect is still unknown. So far there is no systemic study of detailed structure change of hexagonal ErMnO3 under low temperature and high pressure. The applicant of this subject has developed a new pressure-modulated differential XAFS method, which shows a precision of one order of magnitude better than conventional XAFS and is more sensitive to structural variation under high pressure. This subject aims to use this new method as well as in situ low temperature and high pressure XAFS tenichques to study the

英文关键词: multiferroics;ErMnO3;Extreme conditions;XAFS;

成为VIP会员查看完整内容
0

相关内容

【ICCV2021】多层次对比学习的跨模态检索方法
专知会员服务
22+阅读 · 2021年10月24日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
21+阅读 · 2021年6月26日
专知会员服务
49+阅读 · 2021年6月2日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
133+阅读 · 2021年2月17日
专知会员服务
144+阅读 · 2021年2月3日
专知会员服务
78+阅读 · 2020年8月4日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月16日
小贴士
相关主题
相关VIP内容
【ICCV2021】多层次对比学习的跨模态检索方法
专知会员服务
22+阅读 · 2021年10月24日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
21+阅读 · 2021年6月26日
专知会员服务
49+阅读 · 2021年6月2日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
133+阅读 · 2021年2月17日
专知会员服务
144+阅读 · 2021年2月3日
专知会员服务
78+阅读 · 2020年8月4日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员