The integrating factor technique is widely used to solve numerically (in particular) the Schr\"odinger equation in the context of spectral methods. Here, we present an improvement of this method exploiting the freedom provided by the gauge condition of the potential. Optimal gauge conditions are derived considering the equation and the temporal numerical resolution with an adaptive embedded scheme of arbitrary order. We illustrate this approach with the nonlinear Schr\"odinger (NLS) and with the Schr\"odinger-Newton (SN) equations. We show that this optimization increases significantly the overall computational speed, sometimes by a factor five or more. This gain is crucial for long time simulations.
翻译:集成系数技术被广泛用于在光谱方法范围内从数字上(特别是)解决Schr\'odinger等式。在这里,我们展示了利用潜在测量条件所提供的自由来改进这一方法。最佳的测量条件是用一个适应性的任意顺序嵌入的公式来考虑方程式和时间数字分辨率。我们用非线性Schr\'odinger(NLS)和Schr\'odinger-Newton(SN)等式来说明这一方法。我们表明,这种优化极大地提高了总计算速度,有时以系数5或更多来计算。这一增益对于长期模拟至关重要。