The nonlinear Schr\"odinger and the Schr\"odinger-Newton equations model many phenomena in various fields. Here, we perform an extensive numerical comparison between splitting methods (often employed to numerically solve these equations) and the integrating factor technique, also called Lawson method. Indeed, the latter is known to perform very well for the nonlinear Schr\"odinger equation, but has not been thoroughly investigated for the Schr\"odinger-Newton equation. Comparisons are made in one and two spatial dimensions, exploring different boundary conditions and parameters values. We show that for the short range potential of the nonlinear Schr\"odinger equation, the integrating factor technique performs better than splitting algorithms, while, for the long range potential of the Schr\"odinger-Newton equation, it depends on the particular system considered.
翻译:非线性 Schr\'odinger 和 Schr\'odinger-Newton 方程式在多个字段中建模许多现象。 在这里, 我们对分裂法( 通常用于数字解析这些方程式) 和集成因子技术( 也称为Lawson 法) 进行广泛的数字比较。 事实上, 后者在非线性 Schr\' odinger- Newton 方程式中表现得很好, 但还没有对 Schr\' odinger-Newton 方程式进行彻底调查。 比较是在一个和两个空间维度中进行, 探索不同的边界条件和参数值。 我们显示, 对于非线性 Schr\' odinger 方程式的短范围潜力, 集成因子技术比分裂算法表现更好, 而对于Schr\' odinger-Newton 方程式的长范围潜力, 它取决于特定系统。