Multi-view compression technology, especially Stereo Image Compression (SIC), plays a crucial role in car-mounted cameras and 3D-related applications. Interestingly, the Distributed Source Coding (DSC) theory suggests that efficient data compression of correlated sources can be achieved through independent encoding and joint decoding. This motivates the rapidly developed deep-distributed SIC methods in recent years. However, these approaches neglect the unique characteristics of stereo-imaging tasks and incur high decoding latency. To address this limitation, we propose a Feature-based Fast Cascade Alignment network (FFCA-Net) to fully leverage the side information on the decoder. FFCA adopts a coarse-to-fine cascaded alignment approach. In the initial stage, FFCA utilizes a feature domain patch-matching module based on stereo priors. This module reduces redundancy in the search space of trivial matching methods and further mitigates the introduction of noise. In the subsequent stage, we utilize an hourglass-based sparse stereo refinement network to further align inter-image features with a reduced computational cost. Furthermore, we have devised a lightweight yet high-performance feature fusion network, called a Fast Feature Fusion network (FFF), to decode the aligned features. Experimental results on InStereo2K, KITTI, and Cityscapes datasets demonstrate the significant superiority of our approach over traditional and learning-based SIC methods. In particular, our approach achieves significant gains in terms of 3 to 10-fold faster decoding speed than other methods.
翻译:暂无翻译