The General Lotto game is a popular variant of the famous Colonel Blotto game, in which two opposing players allocate limited resources over many battlefields. In this paper, we consider incomplete and asymmetric information formulations regarding the resource budgets of the players. In particular, one of the player's resource budget is common knowledge while the other player's is private. We provide complete equilibrium characterizations in the scenario where the private resource budget is drawn from an arbitrary Bernoulli distribution. We then show that these characterizations can be used to analyze a multi-stage resource assignment problem where a commander must decide how to assign resources to sub-colonels that compete against opponents in separate General Lotto games. While optimal deterministic assignments have been characterized in the literature, we broaden the context by deriving optimal (Bernoulli) randomized assignments, which induce asymmetric information General Lotto games to be played. We demonstrate that randomizing can offer a four-fold improvement in the commander's performance over deterministic assignments.
翻译:洛托将军游戏是著名的布洛托上校游戏中流行的变体, 有两个对立方在很多战场上分配有限的资源。 在本文中, 我们考虑的是有关球员资源预算的信息配方不完整和不对称。 特别是, 玩家的资源预算是常识, 而另一个球员是私人的。 我们在私人资源预算来自伯诺利任意分配的私人资源预算的场景中提供了完全均衡的定性。 然后, 我们展示了这些定性可用于分析多阶段资源分配问题, 即指挥官必须决定如何将资源分配给在洛托将军的比赛中与对手竞争的分行。 虽然文献中已经描述了最佳的确定性任务,但我们通过得出最佳( 伯诺利) 随机化的任务来扩大环境, 从而产生非对称性信息, 洛托将军的游戏将会被玩。 我们证明随机化可以使指挥官的表现在确定性任务上得到四倍的改进。