Differentially private algorithms allow large-scale data analytics while preserving user privacy. Designing such algorithms for graph data is gaining importance with the growth of large networks that model various (sensitive) relationships between individuals. While there exists a rich history of important literature in this space, to the best of our knowledge, no results formalize a relationship between certain parallel and distributed graph algorithms and differentially private graph analysis. In this paper, we define \emph{locally adjustable} graph algorithms and show that algorithms of this type can be transformed into differentially private algorithms. Our formalization is motivated by a set of results that we present in the central and local models of differential privacy for a number of problems, including $k$-core decomposition, low out-degree ordering, and densest subgraphs. First, we design an $\varepsilon$-edge differentially private (DP) algorithm that returns a subset of nodes that induce a subgraph of density at least $\frac{D^*}{1+\eta} - O\left(\text{poly}(\log n)/\varepsilon\right),$ where $D^*$ is the density of the densest subgraph in the input graph (for any constant $\eta > 0$). This algorithm achieves a two-fold improvement on the multiplicative approximation factor of the previously best-known private densest subgraph algorithms while maintaining a near-linear runtime. Then, we present an $\varepsilon$-locally edge differentially private (LEDP) algorithm for $k$-core decompositions. Our LEDP algorithm provides approximates the core numbers (for any constant $\eta > 0$) with $(2+\eta)$ multiplicative and $O\left(\text{poly}\left(\log n\right)/\varepsilon\right)$ additive error. This is the first differentially private algorithm that outputs private $k$-core decomposition statistics.
翻译:不同的私人算法允许大型数据解析, 同时保护用户隐私 。 图形数据设计这样的算法随着大型网络的增长而变得日益重要 。 虽然在这个空间里有丰富的重要文献史, 但据我们所知, 没有结果能正式确定某些平行和分布的图形算法和差异私人图形分析之间的关系 。 在本文中, 我们定义了 emph{ 本地可调整的图形算法, 并显示这种类型的算法可以转换成差异性私人算法 。 我们的正规化由一系列结果驱动, 这些结果显示于我们为一系列问题的中央和地方不同隐私模式中, 包括 $- 核心分解、 低度排序、 密度。 首先, 我们设计了一个 $\ vareplion 美元- 高级的私人图形分析 。 将一个节点的子, 以至少 $\ 美元( D% 1) 和 美元( 美元) 美元( 美元) 的硬度变数( 美元) 的硬度变数( 美元) 美元) 的直径(美元) 直径(美元) 直径(美元) 直径) 直径( 直径) 直径) 直径(美元) 直径(美元) 直径(美元) 直径(美元) 直方(美元) 直方(美元) 直径) 直方(美元) 直方(美元) 直方(美元) 直方(美元) 直方(美元) (美元) 直方(美元) 直方(美元) 直方(美元) 直方(美元) 直方(美元) 直方(美元) 直方(美元) 直方(美元) 直方(美元) 直方) 直方(美元) 直方(美元) 直方(美元) 直方) 直方(美元) 直方(美元) 直方(美元) 直方(美元) 直方) 直方) 直方(美元) 直方(美元) 直方(美元) 直方) 直方) 直方) 直方(美元) 直方(美元) 直方(美元) 直方(美元) 直方(美元)