A Robinson space is a dissimilarity space $(X,d)$ (i.e., a set $X$ of size $n$ and a dissimilarity $d$ on $X$) for which there exists a total order $<$ on $X$ such that $x<y<z$ implies that $d(x,z)\ge \max\{ d(x,y), d(y,z)\}$. Recognizing if a dissimilarity space is Robinson has numerous applications in seriation and classification. An mmodule of $(X,d)$ (generalizing the notion of a module in graph theory) is a subset $M$ of $X$ which is not distinguishable from the outside of $M$, i.e., the distance from any point of $X\setminus M$ to all points of $M$ is the same. If $p$ is any point of $X$, then $\{ p\}$ and the maximal by inclusion mmodules of $(X,d)$ not containing $p$ define a partition of $X$, called the copoint partition. In this paper, we investigate the structure of mmodules in Robinson spaces and use it and the copoint partition to design a simple and practical divide-and-conquer algorithm for recognition of Robinson spaces in optimal $O(n^2)$ time.
翻译:鲁滨逊空间是一个不相同的空间 $(X,d)美元(即一套数额为美元,数额为美元,数额为美元美元),其总价值为 <X美元,总价值为 <X美元,因此,美元<z$意味着美元(x,z)\ge\max ⁇ d(x,y),d(y,z) 美元。认识到如果一个不相同的空间是鲁滨逊,在幻想和分类方面有许多应用。一个数额为(X,d)美元的模块(在图表理论中普遍适用一个模块的概念)是一笔数额为1美元(X美元)的子款,它与美元(X)美元以外的美元无法区分,也就是说,从美元(x)setminus m美元的任何点到美元(美元)的所有点的距离是相同的。如果美元是任何点是X美元,那么美元(d)美元(美元)和最高值为美元(美元)的模块,不包括美元(X,在图表理论中一个模块中确定一个简单的 Robinson-rus Qal结构的分区和我们的一个共同分区对美元和共同分区的确认。