A Robinson space is a dissimilarity space $(X,d)$ (i.e., a set $X$ of size $n$ and a dissimilarity $d$ on $X$) for which there exists a total order $<$ on $X$ such that $x<y<z$ implies that $d(x,z)\ge \max\{ d(x,y), d(y,z)\}$. Recognizing if a dissimilarity space is Robinson has numerous applications in seriation and classification. An mmodule of $(X,d)$ (generalizing the notion of a module in graph theory) is a subset $M$ of $X$ which is not distinguishable from the outside of $M$, i.e., the distance from any point of $X\setminus M$ to all points of $M$ is the same. If $p$ is any point of $X$, then $\{ p\}$ and the maximal by inclusion mmodules of $(X,d)$ not containing $p$ define a partition of $X$, called the copoint partition. In this paper, we investigate the structure of mmodules in Robinson spaces and use it and the copoint partition to design a simple and practical divide-and-conquer algorithm for recognition of Robinson spaces in optimal $O(n^2)$ time.


翻译:鲁滨逊空间是一个不相同的空间 $(X,d)美元(即一套数额为美元,数额为美元,数额为美元美元),其总价值为 <X美元,总价值为 <X美元,因此,美元<z$意味着美元(x,z)\ge\max ⁇ d(x,y),d(y,z) 美元。认识到如果一个不相同的空间是鲁滨逊,在幻想和分类方面有许多应用。一个数额为(X,d)美元的模块(在图表理论中普遍适用一个模块的概念)是一笔数额为1美元(X美元)的子款,它与美元(X)美元以外的美元无法区分,也就是说,从美元(x)setminus m美元的任何点到美元(美元)的所有点的距离是相同的。如果美元是任何点是X美元,那么美元(d)美元(美元)和最高值为美元(美元)的模块,不包括美元(X,在图表理论中一个模块中确定一个简单的 Robinson-rus Qal结构的分区和我们的一个共同分区对美元和共同分区的确认。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
18+阅读 · 2020年9月6日
专知会员服务
162+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
18+阅读 · 2020年9月6日
专知会员服务
162+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员