We consider the goodness-of fit testing problem for H\"older smooth densities over $\mathbb{R}^d$: given $n$ iid observations with unknown density $p$ and given a known density $p_0$, we investigate how large $\rho$ should be to distinguish, with high probability, the case $p=p_0$ from the composite alternative of all H\"older-smooth densities $p$ such that $\|p-p_0\|_t \geq \rho$ where $t \in [1,2]$. The densities are assumed to be defined over $\mathbb{R}^d$ and to have H\"older smoothness parameter $\alpha>0$. In the present work, we solve the case $\alpha \leq 1$ and handle the case $\alpha>1$ using an additional technical restriction on the densities. We identify matching upper and lower bounds on the local minimax rates of testing, given explicitly in terms of $p_0$. We propose novel test statistics which we believe could be of independent interest. We also establish the first definition of an explicit cutoff $u_B$ allowing us to split $\mathbb{R}^d$ into a bulk part (defined as the subset of $\mathbb{R}^d$ where $p_0$ takes only values greater than or equal to $u_B$) and a tail part (defined as the complementary of the bulk), each part involving fundamentally different contributions to the local minimax rates of testing.


翻译:Hölder连续密度的拟合优度检验:锐利的局部极小极小化率 翻译后的摘要: 我们考虑 Hölder光滑密度的拟合优度检验问题。给定一个未知密度 $p$ 和一个已知密度 $p_0$,假设都是在 $\mathbb{R}^d$ 上定义的。我们研究如何选择 $\rho$,才能在高概率下将 $p=p_0$ 与 $p$ 为所有 Hölder 光滑密度,且满足 $\|p-p_0\|_t \geq \rho$,其中 $t \in [1,2]$,以及 $p$ 满足 Hölder 平滑参数 $\alpha>0$,这两种情况加以区分。在本研究中,我们解决了 $\alpha \leq 1$ 的情况,并使用了对密度的额外技术限制来处理 $\alpha>1$ 的情况。我们在给定 $p_0$ 的情况下,确定了关于测试的局部极小极小化率的匹配上限和下限,并以 $p_0$ 为显式函数的形式给出。我们提出了一种新的测试统计量,我们认为这可能是值得独立探究的。我们还建立了第一个明确的截止值 $u_B$ 的定义,从而将 $\mathbb{R}^d$ 划分为一个主体部分(定义为 $p_0$ 只取大于或等于 $u_B$ 的值的 $\mathbb{R}^d$ 的子集)和一个尾部分(定义为与主体互补),每个部分对于检验的局部极小极小化率都有根本不同的贡献。

0
下载
关闭预览

相关内容

【2023新书】随机模型基础,815页pdf
专知会员服务
101+阅读 · 2023年5月10日
专知会员服务
32+阅读 · 2021年10月9日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
61+阅读 · 2020年3月4日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【ICML2019】IanGoodfellow自注意力GAN的代码与PPT
GAN生成式对抗网络
18+阅读 · 2019年6月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年5月9日
Arxiv
0+阅读 · 2023年5月4日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员